Что такое фазное и линейное напряжение?

Схемы подключения

Есть две схемы подключения источников напряжения (генераторов) в сеть:

  • «треугольником»;
  • «звездой».

Когда выполняется подключение «звездой», начало обмоток генератора соединены в одной точке. Оно не дает возможности увеличения мощности. А подключение по схеме «треугольник» — это когда обмотки соединяются последовательно, а именно, начало обмотки одной фазы соединяется с концом обмотки другой. Это дает способность в три раза увеличить напряжение.

Схемы подключения «звезда», «треугольник»:

Для лучшего понимания схем подключения специалисты дают определение, что такое фазные и линейные токи:

линейный ток — это ток, который протекает в подводнике соединения источника электрической энергии и приемника (нагрузки);

Токи линейные и фазные:

фазный ток — это ток, протекающий в каждой обмотке источника электрической энергии или в обмотках нагрузки.

Линейные и фазные токи имеют значение, когда есть несимметричная нагрузка на источник (генератор), это часто встречается в процессе подключения объектов к электроснабжению. Все параметры, относящиеся к линии, — это линейные напряжения и токи, а относящиеся к фазе, — параметры фазных величин.

Из соединения «звезда» видно, что линейные токи имеют такие же параметры, как и фазные. Когда система симметрична, необходимость в нейтральном проводе отпадает, на практике он поддерживает симметрию источника, когда нагрузка несимметрична.

Из-за несимметричности подключаемой нагрузки (а на практике это происходит с включением в цепь осветительных устройств) надо обеспечить независимую работу трем фазам цепи, это можно сделать и в трехпроводной линии, когда фазы приемника соединяются в треугольник.

Специалисты обращают внимание на тот факт, что когда понижается линейное напряжение, изменяются параметры фазного напряжения. Зная значение междуфазное напряжение, можно легко определить величину фазного напряжения

Что показывает электрическое напряжение

Из школьного курса физики известно, что электрическое поле – это особый вид материи, который возникает вокруг электрических зарядов. Его можно наблюдать, создав заряд, например, с помощью трения – после расчесывания расческа начинает притягивать мелкие кусочки бумаги. Если заряженные частицы будут двигаться по проводнику – то в проводнике возникнет ток, а вокруг проводника – магнитное поле, с помощью которого можно будет совершать полезную работу. Это явление лежит в основе работы электродвигателей. И наоборот – если двигать магнит рядом с проводником (или внутри проводящей катушки) – то в проводнике возникнет электрический ток – на этом явлении основаны электрогенераторы.

Создать движение заряженных частиц по проводнику можно также с помощью особых химических реакций – на этом явлении базируются химические источники тока — батареи и аккумуляторы.

«Сила», с которой заряды будут двигаться по проводнику, называется электрическим напряжением, единица измерения — вольт. А количество этих зарядов, движущихся по проводнику – электрическим током, единица измерения — ампер.

Обычной батарейки достаточно для зажигания фонарика, но для совершения большой работы необходимо гораздо большее напряжение, которое создается специальными генераторами больших размеров.

Какое соотношение между линейными и фазными напряжениями

Напряжение между линейным проводом и нейтралью (Ua, Ub, Uc) называется фазным

. Напряжение между двумя линейными проводами (UAB, UBC, UCA) называетсялинейным . Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

Векторная диаграмма — графическое изображение меняющихся по закону синуса (косинуса) величин и соотношений между ними при помощи направленных отрезков — векторов. Векторные диаграммы широко применяются в электротехнике, акустике, оптике, теории колебаний итд.

Гармоническое (то есть синусоидальное) колебание может быть представлено графически в виде проекции на некоторую ось (обычно берут ось координат Оx) вектора, вращающегося с постоянной угловой скоростью ω. Длина вектора соответствует амплитуде, угол поворота относительно оси (Ox) — фазе.

Сумма (или разность) двух и более колебаний на векторной диаграмме представлена при этом (геометрической) суммой (или разностью) векторов этих колебаний. Мгновенное значение искомой величины определяется при этом проекцией вектора суммы на ось Оx, амплитуда — длиной этого вектора, а фаза — углом его поворота относительно Ox.

19. Назначение нулевого провода в четырехпроводной цепи.

Занулением называется электрическое соединение металличе­ских нетоковедущих частей электроустановок с заземленной нейтра­лью вторичной обмотки трехфазного понижающего трансформатора или генератора, с заземленным выводом источника однофазного то­ка, с заземленной средней точкой в сетях постоянного тока.

Нулевым защитным проводником называется проводник, со­единяющий зануляемые части (корпуса, конструкции, кожухи и т.п.) с заземленной нейтралью источника питания (трансформатора, ге­нератора).

Заземление нейтрали источника питания, осуществляемое не­посредственно вблизи него, является рабочим заземлением электро­установки; оно выполняется аналогично защитному заземлению.

Согласно ПУЭ для сетей напряжением 380/220 В сопротивление рас­теканию рабочего зазем­ления нейтрали должно быть не более 4 Ом.

В трехфазной четырехпроводной сети чет­вертый проводник, при­соединенный к нейтрали источника питания и ис­пользуемый в цепи пита­ния электроприемников, называется нулевым ра­бочим проводником. Од­новременно он может вы­полнять также функцию нулевого защитного про­водника. На рисунке 1а по­казана принципиальная схема зануления корпуса электродвигателя М

, защищенного от перегрузок и токов короткого замыкания плавкими предохранителямиF .

В случае замыкания на корпус одной фазы питающей линии (например, фазы А

) образуется цепь однофазного короткого замыка­ния через малые сопротивления контура: обмотка трансформатора zт, фазный провод линии zф, нулевой защитный провод zн.п.

20. Соединение нагрузки треугольником. Векторные диаграммы. Соотношения между фазными и линейными токами и напряжениями.

Кроме соединения звездой, генераторы, трансформаторы, дви­гатели и другие потребители трехфазного тока могут включаться треугольником.Объединяя попарно провода несвязанной шестипроводной системы и соединяя фазы,, переходим к трех­фазной трехпроводной системе, соединенной треугольником.

, соединение треугольником выполняется таким образом, чтобы конец фазы А был соединен с началом фазы В, конец фазы В соединен с началом фазы С и конец фазы С соединен с началом фазы А. К местам соединения фаз присоединяют линей­ные провода.

Если обмотки генератора соединены треугольником, , линейное напряжение создает каждая фазная обмотка. У потребителя, соединенного треугольником, линейное

напряжение подключается к зажимам фазного сопротивления. Сле­довательно, при соединении треугольником фазное напряжение равно линейному:

В этой краткой статье, не вдаваясь в историю сетей переменного тока, разберемся в соотношениях между фазными и линейными напряжениями. Ответим на вопросы о том, что такое фазное напряжение и что такое линейное напряжение, как они соотносятся между собой и почему эти соотношения именно таковы.

Соотношения фазного и линейного напряжения

Соотношение между напряжением линейным и фазным составляет 1,73. То есть при ста процентах мощности ЛН, напряжение фазы будет 58%. То есть, ЛН превышает ФН в 1,73 раза и при этом стабильно.

ФН и ЛН, отличие и соотношение

Напряжение в трёхфазной цепи оценивается по параметрам линейной составляющей. Обычно оно 380 вольт и тождественно 220 вольтам фазной компоненты сети трёхфазного электротока. В электрических сетях, где имеется четыре провода, напряжение 3-фазного тока обозначается 380/220В. Это позволяет подключить к подобной сети оборудование с 1-фазным потреблением электричества 220В и мощных приборов, которые могут работать от 380В.

Универсальной и приемлемой в большинстве случаев является трёхфазная цепь 380/220В 0-вым проводом. Электроприборы, которые функционируют от однофазного напряженья 220В, могут при подсоединении к паре проводов ФН питаться от ЛН.

Электрооборудование, которое запитывается от трёхфазной сети может работать, только если имеется подсоединение одновременно к 3-м выводам различных фаз. Тогда заземление не обязательно, но если изоляционный материал провода будет повреждён, то отсутствие 0-ого значительно увеличивает опасность удара электрическим током.

Важно! При понижении ЛН меняются величины ФН. При уже выясненном значении междуфазного напряжения определить величину ФН труда не составит

Для чего требуется проверка напряжения фаз перед включением

При подключении оборудования, требующего напряжения 380 в (к примеру, асинхронного электродвигателя) следует проверить напряжение на каждой из трёх фаз и сравнить показатели. Особенно это касается частных секторов, где напряжение нестабильно или электромонтёры имеют недостаточную квалификацию. Дело в том, что в деревнях часто не обращают внимания на распределение нагрузки. В результате подобных действий одна из фаз может быть перегружена при минимальной нагрузке на остальные. Вкупе с устаревшими трансформаторами это приводит к перекосу фаз. Получается, что на одной из фаз напряжение значительно снижается. Это приводит к перегреву трёхфазных двигателей или иного оборудования и выходу его из строя.

Расчет линейного и фазного напряжения

Сети с линейным током нашли широкое применение за счет своих характеристик меньшей травмоопасности и легкости разведения такой электропроводки. Все электрические устройства в этом случае соединены только с одним фазным проводом, по которому и идет ток, и только он один и представляет опасность, а второй – это земля.

Рассчитать такую систему несложно, можно руководствоваться обычными формулами из школьного курса физики. Кроме того, для измерения этого параметра сети, достаточно использовать обычный мультиметр, в то время как для снятия показаний подключения фазного типа, придется задействовать целую систему оборудования.

Для подсчета напряжения линейного тока, применяют формулу Кирхгофа:

Уравнение которой гласит, что каждой из частей электрической цепи, сила тока равна нулю – k=1.

И закон Ома:

Используя их, можно без труда произвести расчеты каждой характеристики конкретного клейма или электросети.

В случае разделения системы на несколько линий, может появиться необходимость рассчитать напряжение между фазой и нулем:

Эти значения являются переменными, и меняются при разных вариантах подключения. Поэтому, линейные характеристики идентичны фазовым.

Однако, в некоторых случаях, требуется вычислить чему равно соотношение фазы и линейного проводника.

Для этого, применяют формулу:

Uл – линейное, Uф – фазовое. Формула справедлива, только если – IL = IF.

При добавлении в электросистему дополнительных отводящих элементов, необходимо и персонально для них рассчитывать фазовое напряжение. В этом случае, значение Uф заменяется на цифровые данные самостоятельного клейма.

При подключении промышленных систем к электросети, может появиться необходимость в расчете значения реактивной трехфазной мощности, которое вычисляется по следующей формуле:

Идентичная структура формулы активной мощности:

Примеры расчета:

Например, катушки трехфазного источника тока подключены по схеме «звезда», их электродвижущая сила 220В. Необходимо вычислить линейное напряжение в схеме.

Линейные напряжения в этом подключении будут одинаковы и определяются как:

Трехфазная цепь электрического питания зданий и промышленных объектов популярна в РФ, так как имеет преимущества — экономичность (по использованию материалов) и способность передачи большего количества электроэнергии по сравнению с однофазной цепью электроснабжения.

Трехфазное подключение дает возможность включения в работу генераторов и электродвигателей повышенной мощности, а также возможность работы с разными параметрами напряжения, это зависит от вида включения нагрузки в электрическую цепь. Для работы в трехфазной сети надо понимать соотношение ее элементов.

Советы профессионалов

Теперь нелишним будет обратиться к советам, профессиональных электриков, которые помогут более грамотно выполнить расключение электрического щитка и упростить его эксплуатацию.

Устанавливая распределительный щит в квартире или доме, желательно, создать схему всех подключений с понятными обозначениями. Её можно вычертить или распечатать на бумаге и приклеить с внутренней стороны дверцы корпуса щита. Это позволит, в случае аварийной ситуации и отсутствии хозяина, практически любому оперативно выполнить отключение или включение энергии.

Для удобства обслуживания и проведения ремонтных работ все группы проводки внутри распределительного щита группируются по назначению линий. Группировку можно произвести при помощи изоляционной ленты или пластиковых хомутов. На каждую группу крепятся бирки с соответствующими надписями. Ремонтируя проводку не придётся ломать голову над тем – какой провод за что отвечает и избежать неприятных ошибок.

Ещё раз напоминаем о важности правильного подключения автоматических выключателей – проводники ввода заводятся сверху. Для надёжности осмотрите маркировку на устройствах, большинство производителей размещают на них схему правильного подключения и вопрос – как подключить автомат в щитке, отпадает сам собой.

Образцовый щитокИсточник static.wixstatic.com

Образцовый щитокИсточник static.wixstatic.com

После контрольного запуска, собранного или отремонтированного распределительного щитка он оставляется на несколько часов открытым. При этом нагрузку на сеть желательно повысить до максимума. Через пару часов можно проверить – греются ли компоненты щитка.

При правильной сборке и расчётах повышенной температуры быть не должно. В противном случае необходимо отключать щиток, и искать источник проблемы. Если этого не сделать – короткое замыкание неизбежно.

Примерно один раз в шесть месяцев необходимо протягивать все винты внутри распределительного щита

Это особенно важно при использовании в сети алюминиевых проводов.. Профессионалы рекомендуют не пожалеть трёх мест под установку в щитке модульной розетки. Это позволит подключать к щитку различные инструменты и освещение, полностью обесточив все линии

Это позволит подключать к щитку различные инструменты и освещение, полностью обесточив все линии.

Профессионалы рекомендуют не пожалеть трёх мест под установку в щитке модульной розетки. Это позволит подключать к щитку различные инструменты и освещение, полностью обесточив все линии.

Для создания высокотехнологичного щитка распределения, рекомендуется установить в него реле напряжения. Это устройство будет отслеживать показатели сети и в случае критического скачка вверх или падения напряжения автоматически отключит нагрузку. После восстановления номинальных показателей произойдёт включение. Таким образом можно надёжно защитить электроприборы имеющие повышенные требования к напряжению сети.

Устаревшие автоматы – «пробки»Источник homemasters.ru

Ещё раз обратите на размеры корпуса, как говорилось выше, он должен быть «на вырост» обеспечивая возможность расширения системы. Более просторный корпус снижает взаимный перегрев элементов и повышает срок их службы.

Протягивание креплений контактов можно совместить с уборкой внутри корпуса распределительного щита. Грязь заставляет элементы щитка сильнее греться, а пыль и паутина могут стать источниками коротких замыканий.

Еще пример сборки щитка в видео:

Трехфазное питание: преимущества

Наличие трех фаз несет массу преимуществ владельцу частного дома или дачи. Вот некоторые из них:

  1. Увеличенный объем мощностей

С каждым годом количество бытовых электроприборов в каждом доме увеличивается, а значит увеличивается их суммарная мощность и нагрузка, которую они передают на электросеть. На сегодняшний день в России местные Облэнерго предлагают возможность оформления договора на потребление 5 кВт для однофазных сетей и 15 кВт для трехфазных.

Предположим у вас одна фаза и суммарная мощность всех электроприборов в вашем доме составляет 4 кВт. Но прошло время, и вы решили приобрести себе сварочный аппарат мощностью 3 кВт. Кстати о том, какой купить сварочный аппарат, можете прочитать здесь. В этом случае суммарная мощность составит 7 кВт, и одновременно все приборы вы использовать никак не сможете. А если в будущем планируется установка насосного оборудования или электрической отопительной системы, тогда стоит задуматься о подключении трехфазной сети.

  1. Равномерное распределение нагрузки

Благодаря работе одновременно трех фаз есть возможность равномерно распределить между ними нагрузку, чтобы избежать перекоса. Например, если вы регулярно занимаетесь сваркой в гараже, лучше всего это делать не на той фазе, к которой подключен телевизор, компьютерная техника или лампочки в доме. Можно подсчитать нагрузку по каждому бытовому прибору и пропорционально распределить их по фазам.

Также бывают случаи, когда из-за повышенной нагрузки (не по вашей вине) на определенных фазах происходит падение напряжения до 170 В или даже ниже. Зачастую это бывает, если дом находится на большом расстоянии от трансформаторной подстанции, и перед ним десятки других потребителей. В этом случае оборудование можно временно переключить на менее загруженную фазу, а когда перекос «уйдет», вернуть все на место.

  1. Работа трехфазного оборудования

Хотя большинство бытовых приборов работают от 220 В, все же существует оборудование для трехфазных сетей в 380 В. Можно выделить следующие виды такого оборудования:

  • Насосные станции. Для некоторых глубинных и поверхностных насосных станций требуется 380 В.
  • Трансформаторные сварочные аппараты.
  • Отопительные котлы. Большинство отопительных электрических котлов имеют номинальную мощность в 7 — 9 кВт — однофазная сеть просто-напросто его бы не потянула. Например, для одноконтурного котла ЭВАН Warmos-IV-9.45 мощностью 9.45 кВт обязательно требуется три фазы.
  1. Возможность установки автоматов и УЗО с меньшими номинальными значениями

Благодаря тому, что на каждом фазном проводе в трехфазной сети будет меньшая нагрузка, чем на одной фазе в случае исполнения однофазного ввода, есть возможность установки автоматов защиты и УЗО с меньшими показателями токовой нагрузки. Например, если на каждой из фаз будут размещены приборы суммарной мощностью по 3 кВт, то для каждой фазы потребуются автомат, способный выдержать такую нагрузку:

3000/220 = 13.6 А (нагрузка по фазе)

Ближайший автомат по номиналу на 16 А. Для однофазного же питания при максимально возможной мощности в 5 кВт, потребуется автомат мощнее. То же правило действует и для устройств защитного отключения. Мы уже писали о том, как выбрать УЗО по мощности, поэтому не будем на этом останавливаться.

История

Впервые идеи использования двухфазного тока для создания вращающего момента были высказаны Домиником Араго в 1827 году. Практическое применение было описано Николой Тесла в его патентах от 1888 года, примерно тогда же им была разработана конструкция соответствующего электродвигателя. Далее эти патенты были проданы компании Вестингауза, которая начала развивать двухфазные сети с США. Позднее эти сети были вытеснены трёхфазными, теория которых разрабатывалась русским инженером Михаилом Осиповичем Доливо-Добровольским, работавшим в Германии в компании AEG. Однако, благодаря тому, что в патентах Теслы содержались общие идеи использования многофазных цепей, компании Вестингауза некоторое время удавалось сдерживать их развитие с помощью патентных судебных процессов.

Преимущества

Преимуществом двухфазных сетей было то, что они допускали простой, мягкий пуск электрических двигателей. На заре электротехники эти сети с двумя отдельными фазами были более просты для анализа и разработки. Тогда ещё не был создан метод симметричных составляющих (он был изобретён в 1918 году), который впоследствии дал инженерам удобный математический инструментарий для анализа несимметричных режимов нагрузки многофазных электрических систем.

Вращающееся магнитное поле, создаваемое в двухфазных системах, позволяло электромоторам создавать вращающий момент от нулевой частоты вращения мотора, что не было возможным в однофазных асинхронных электромоторах (без специальных пусковых средств). Асинхронные двигатели, разработанные для двухфазных систем, имеют ту же конфигурацию обмоток, что и однофазные двигатели с пусковым конденсатором.

Для трёхфазной электрической сети требуются линии с меньшей массой проводящих материалов (как правило, металлов) при том же самом напряжении и большей передаваемой мощности, в сравнении с двухфазной четырёхпроводной системой. Двухфазные линии были вытеснены трёхфазными в электрических распределительных сетях, однако они до сих пор используются в некоторых системах управления.

Передаваемая мгновенная активная мощность в трёхфазных и двухфазных электрических сетях постоянна при симметричной нагрузке. Однако в однофазных сетях мгновенная активная мощность колеблется с частотой, в два раза бо́льшей частоты напряжения в линии. Эти пульсации мощности приводят к повышенному шуму и механическим вибрациям в электрооборудовании с намагничивающимися материалами из-за магнитострикционного эффекта, а также к вращательным вибрациям валов электродвигателей.

Двухфазные контуры обычно используют две отдельные пары токонесущих проводников. Могут использоваться и три проводника, однако по общему проводу течёт векторная сумма фазных токов, и поэтому общий провод должен иметь больший диаметр. В отличие от этого, в трёхфазных сетях при симметричной нагрузке векторная сумма фазных токов равна нулю, и поэтому в этих сетях возможно использовать три линии одинакового диаметра. Для электрических распределительных сетей требование трёх проводящих линий лучше, чем требование четырёх, поскольку это даёт значительную экономию в стоимости проводящих линий и в расходах по их установке.

Двухфазное напряжение может быть получено от трёхфазного источника путём соединения однофазных трансформаторов по так называемой схеме Скотта. Симметричная нагрузка в такой трёхфазной системе в точности эквивалентна симметричной трёхфазной нагрузке.

Часто можно слышать, как называют электрические сети трёхфазными, двухфазными, реже — однофазными, но иногда подразумевается под этими понятиями не одно и то же. Чтобы не запутаться, давайте разберёмся с тем, чем отличаются эти сети и что имеют в виду, когда говорят, например, про отличия трехфазного от однофазного тока

При переменном токе провод, подводящий ток — это фаза. Её схемное обозначение L1 (А).

Второй называют нулевым. Обозначение — N.

Значит, для передачи однофазного тока нужно использовать два провода. Называются они фазным и нулевым соответственно.

Между этими проводами напряжение 220 В.

Идёт передача двух переменных токов. Напряжение этих токов сдвинуто по фазе на 90 градусов. Передают токи двумя проводами: двумя фазными и двумя нулевыми.

Это дорого. Поэтому теперь на электростанциях его не генерируют и по линиям электропередач (ЛЭП) не передают.

Линейное и фазное напряжение – отличие и соотношение

В этой краткой статье, не вдаваясь в историю сетей переменного тока, разберемся в соотношениях между фазными и линейными напряжениями. Ответим на вопросы о том, что такое фазное напряжение и что такое линейное напряжение, как они соотносятся между собой и почему эти соотношения именно таковы.

Ни для кого не секрет, что сегодня электроэнергия от генерирующих электростанций подается к потребителям по высоковольтным линиям электропередач с частотой 50 Гц. На трансформаторных подстанциях высокое синусоидальное напряжение понижается, и распределяется по потребителям на уровне 220 или 380 вольт. Где-то сеть однофазная, где-то трехфазная, однако давайте разбираться.

Действующее значение и амплитудное значение напряжения

Прежде всего отметим, что когда говорят 220 или 380 вольт, то имеют ввиду действующие значения напряжений, выражаясь математическим языком – среднеквадратичные значения напряжений . Что это значит?

Это значит, что на самом деле амплитуда Um (максимум) синусоидального напряжения, фазного Umф или линейного Umл, всегда больше этого действующего значения. Для синусоидального напряжения его амплитуда больше действующего значения в корень из 2 раз, то есть в 1,414 раза.

Так что для фазного напряжения в 220 вольт амплитуда равна 310 вольт, а для линейного напряжения в 380 вольт амплитуда окажется равной 537 вольт. А если учесть, что напряжение в сети никогда не бывает стабильным, то эти значения могут быть как ниже, так и выше. Данное обстоятельство всегда следует учитывать, например выбирая конденсаторы для трехфазного асинхронного электродвигателя.

Фазное сетевой напряжение

Обмотки генератора соединены по схеме «звезда», и объединены концами X, Y и Z в одной точке (в центре звезды), которая называется нейтралью или нулевой точкой генератора. Это четырехпроводная трехфазная схема. К выводам обмоток A, B и C присоединяются линейные провода L1, L2 и L3, а к нулевой точке — нейтральный провод N.

Напряжения между выводом A и нулевой точкой, B и нулевой точкой, С и нулевой точкой, – называются фазными напряжениями, их обозначают Ua, Ub и Uc, ну а поскольку сеть симметрична, то можно просто написать Uф — фазное напряжение.

В трехфазных сетях переменного тока большинства стран стандартное фазное напряжение равно приблизительно 220 вольт — напряжение между фазным проводом и нейтральной точкой, которая обычно заземляется, и ее потенциал принимается равным нулю, потому она и называется еще нулевой точкой .

Линейное напряжение трехфазной сети

Напряжения между выводом A и выводом B, между выводом B и выводом C, между выводом C и выводом A, – называются линейными напряжениями, то есть это напряжения между линейными проводниками трехфазной сети. Их обозначают Uab, Ubc, Uca, или можно просто написать Uл.

Стандартное линейное напряжение в большинстве стран равно приблизительно 380 вольт. Легко заметить в данном случае, что 380 больше 220 в 1,727 раза, и, пренебрегая потерями, ясно, что это квадратный корень из 3, то есть 1,732. Безусловно, напряжение в сети все время в ту или другую сторону колеблется в зависимости от текущей загруженности сети, но соотношение между линейными и фазными напряжениями именно таково.

Откуда взялся корень из 3

В электротехнике часто применяют векторный метод изображения синусоидально изменяющихся во времени величин напряжений и токов.

График зависимости величины проекции от времени есть синусоида. И если амплитуда напряжения — это длина вектора U, то проекция, которая меняется со временем — это текущее значение напряжения, а синусоида отражает динамику напряжения.

Так вот, если теперь изобразить векторную диаграмму трехфазных напряжений, то получится, что между векторами трех фаз одинаковые углы по 120°, и тогда если длины векторов — это действующие значения фазных напряжений Uф, то чтобы найти линейные напряжения Uл, необходимо вычислить РАЗНОСТЬ любой пары векторов двух фазных напряжений. Например Ua – Ub.

Выполнив построение методом параллелограмма, увидим, что вектор Uл = Uа + (-Ub), и в результате Uл = 1,732Uф. Отсюда и получается, что если стандартные фазные напряжения равны 220 вольт, то соответствующие линейные будут равны 380 вольт.

Что такое трехфазный ток

Это система, объединяющая три электроцепи с токами, которые разнятся по фазе на 1/3 периода. Причём их собственные ЭДС совпадают по частоте и амплитуде и имеют такой же фазовый сдвиг. У такой структуры фазное и линейное напряжения соответственно равны 220 В и 380 В. Частота периодических колебаний – 50 герц (Гц).

Если подключить к осциллографу токовые синусоидальные сигналы от трёхфазной сети, то можно будет увидеть, что они совершают прохождение своих точек максимума в регулярной фазовой последовательности.

Общая формула мощности переменного тока:

P = I*U*cosϕ,

где:

  • P – мощность, (Вт);
  • I – ток, (А);
  • U – напряжение, (В);
  • cosϕ – коэффициент мощности.

Значение cosϕ должно стремиться к единице. Средний коэффициент мощности лежит в интервале 0,7-0,8. Чем он выше, тем больше КПД установки.

В случае 3-х фазных сетей мощность будет зависеть от схемы соединения источника и нагрузки.

График трёхфазного тока

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector