Правило золотого сечения в архитектуре, строительстве и дизайне
Содержание:
- 5 способов соблюдать правило в интерьере
- Пропорции золотого сечения в материальном мире
- Инструменты для дизайнеров
- Использование золотого сечения в дизайне
- Как работает принцип золотого сечения в архитектуре.Тайны ряда Фибоначчи:
- Как использовать золотое сечение в жизни.
- О золотом сечении простыми словами
- Что такое золотое сечение
- Что такое золотое сечение?
- Принцип расчета и построения золотого сечения
- Божественная пропорция: что создано природой
5 способов соблюдать правило в интерьере
- В доме, построенном без учёта соотношения, можно сделать перепланировку комнат, чтобы пропорции соответствовали.
- Иногда достаточно переставить мебель или сделать дополнительную перегородку.
- Аналогичным образом меняется высота и длина окон и дверей.
- В цветовом оформлении получение упрощённого соотношения достигается за счёт 60% основного цвета, 30% — оттеняющего, и остальных 10% — усиливающих восприятие тонов.
- Высота и длина мебели должна соизмеряться высотой потолков и шириной простенков.
Приложение этой нормы в интерьере, как архитектурно оформленном пространстве, объединяют с понятиями самоорганизации, рекурсии, асимметрии, красоты.
Пропорции золотого сечения в материальном мире
В 1509 году Лука Пачоли написал книгу, которая называет число Ф «Божественной пропорцией», что было наглядно показано Леонардо да Винчи. Позже да Винчи назвал эту пропорцию золотым сечением. Оно использовалось для достижения баланса и красоты во многих картинах и скульптурах эпохи Возрождения.
Да Винчи сам использовал золотое сечение, чтобы определить все пропорции в «Тайной вечере», включая размеры стола, пропорции стен и деталей интерьера. Золотое сечение также появляется в «Витрувианском Человеке» да Винчи и «Мона Лизе». Считается, что золотое сечение использовали и другие великие художники, включая Микеланджело, Рафаэля, Рембрандта, Сьюрата и Сальвадора Дали.
Термин «фи» был придуман американским математиком Марком Барром в 1900-х годах. Ф продолжал применяться в математике и физике, в том числе в плитках Пенроуза 1970-х годов, которые позволяли мозаичным поверхностям иметь пятикратную симметрию. В 1980-х годах Ф появился в квазикристаллах – недавно открывшейся форме материи.
Фи — более чем загадочный и неясный термин в математике и физике. Он появляется вокруг нас в нашей повседневной жизни, даже в наших эстетических взглядах. Исследования показали, что когда испытуемые видят случайные лица, они считают наиболее привлекательными те, которые имеют четкие параллели с золотым сечением. Лица, оцененные как наиболее привлекательные, показывают золотые соотношения между шириной лица и шириной глаз, носа и бровей. Испытуемые не были математиками или физиками, знакомыми с правилом золотого сечения (они были просто среднестатистическими людьми), и оно вызвало инстинктивную реакцию.
Золотое сечение также проявляется во всех видах природы и науки. Ниже приведены примеры самых неожиданных мест, в которых можно его встретить.
- Цветочные лепестки. Количество лепестков на некоторых цветах соответствует последовательности Фибоначчи. С точки зрения теории Дарвина считается, что каждый лепесток помещается таким образом, чтобы обеспечить максимально возможное воздействие солнечного света и других факторов.
- Семенные головки. Семена цветка часто начинают произрастать в центре семенной головки и мигрируют наружу, заполняя свободное пространство. Например, семечки подсолнухов следуют этой схеме.
- Сосновые шишки. Семенные коробочки сосновых шишек наполнены семенами, которые растут спирально вверх, в противоположных направлениях. Количество шагов, которые делают спирали, как правило, соответствует числам Фибоначчи.
- Ветви дерева. То, как ветки дерева формируются или расщепляются, является примером последовательности Фибоначчи. Корневые системы и водоросли также придерживаются такого способа формирования.
- Раковины. Многие раковины, в том числе раковины улитки и раковины наутилуса, являются прекрасными примерами золотой спирали.
- Спиральные галактики. Млечный путь имеет несколько спиральных рукавов, каждый из которых имеет логарифмическую спираль примерно 12 градусов. Форма спирали идентична золотой спирали, а золотой прямоугольник можно нарисовать над любой спиральной галактикой.
- Ураганы. Внутреннее строение ураганов часто следует правилу золотой спирали.
- Пальцы руки человека. Каждый участок пальца от кончика основания до запястья больше, чем предыдущий, примерно на соотношение Ф.
- Тела человека и животных. Расстояние от пупка человека до пола и от макушки головы до пупка – это золотое сечение. Но человек не единственный пример золотого сечения в животном мире. Дельфины, морские звезды, морские ежи, муравьи и пчелы также демонстрируют эту пропорцию.
- Молекулы ДНК. Молекула ДНК имеет размеры 34 ангстрем на 21 ангстрем на каждом полном цикле спирали в виде сдвоенной спирали. В рядах Фибоначчи 34 и 21 являются последовательными числами.
Таким образом, примеров, где встречаются пропорции и соотношения, следующие правилу золотого сечения, более чем достаточно. Кроме перечисленных примеров, число «Фи» часто встречается в математике, физике, астрономии, биологии и иных сферах деятельности человека. Можно смело утверждать, что название «Божественное сечение» по праву присвоено числу Ф – видимо им руководствовался создатель, наполняя эту Вселенную всем живым и неживым.
Инструменты для дизайнеров
Калькулятор Phi
Когда вы вводите число в этот веб-инструмент, он рассчитывает результат, необходимый для золотого сечения. Этот сервис бесплатный и очень простой в использовании.
Типографический калькулятор Pearsonified
Это онлайн инструмент с кнопкой ‘Set My Type’. Вы просто нажимаете на нее после того, как введете ширину контента и/или размер шрифта, и сервис сам подберет лучшее типографическое решение. У Вас также есть возможность ввести значение CPL. Он оптимизирует размер знаков по линиям.
Сервис золотого отношения UX Triggers
Вы можете проверить любой сайт с помощью этого бесплатного сервиса и быстро определить использована ли последовательность Фибоначчи в дизайне.
Все, что вам нужно знать о визуальном восприятии и дизайне сайтов
Использование золотого сечения в дизайне
Принципы использования универсальной пропорции все чаще используют при строительстве частных домов
Особое внимание уделяется соблюдению оптимальных пропорций конструкции. Немало внимания уделяют правильному распределению внимания внутри дома
Современная интерпретация золотого сечения уже не относится лишь к правилам геометрии и формы. Сегодня принципу гармонических пропорций подчиняются не только размеры деталей фасада, площадь комнат или длины фронтонов, но и цветовая палитра, используемая при создании интерьера.
Соорудить гармоничное строение на модульном основании гораздо проще. Многие отделения и помещения в этом случае выполняются как отдельные блоки. Они проектируются в строгом соответствии с гармоническим правилом. Возвести здание как набор отдельных модулей, значительной проще, чем создавать единую коробку.
Многие фирмы, занимающиеся сооружением загородных домов, при создании проекта соблюдают гармоническое правило. Это позволяет создать у клиентов впечатление, что конструкция здания детально проработана. Такие дома обычно описывают, как наиболее гармоничные и комфортные в использовании. При оптимальном выборе площадей комнат жильцы психологически ощущают успокоение.
Если дом возведен без учета гармонических пропорций, можно создать планировку, которая будет по соотношению размеров стен приближена к показателю 1:1,61. Для этого в комнатах устанавливают дополнительные перегородки, или переставляют предметы мебели.
Аналогично меняют габариты дверей и окон таким образом, чтобы проем имел ширину, показатель которой меньше значения высоты в 1,61 раза.
Сложнее подбирать цветовые решения. В этом случае можно соблюдать упрощенное значение золотого сечения – 2/3. Основным цветовым фоном следует занять 60% пространства комнаты. Оттеняющий оттенок занимает 30% помещения. Оставшаяся площадь поверхностей закрашивается близкими друг к другу тонами, усиливающими восприятие выбранного цвета.
Внутренние стены комнат делят горизонтальной полосой. Ее располагают в 70 см от пола. Высота мебели должна находиться в гармоническом соотношении с высотой стен. Это правило относится и к распределению длин. К примеру, диван должен иметь габариты, которые бы оказались не меньше 2/3 длины простенка. Площадь помещения, которая занята предметами мебели, тоже должна иметь определенное значение. Она относится к общей площади всего помещения как 1:1,61.
Золотая пропорция сложно применима на практике ввиду наличия всего одного числа. Именно поэтому. Проектирую гармоничные строения, пользуются рядом чисел Фибоначчи. Благодаря этому обеспечивается разнообразие вариантов форм и пропорций деталей строения. Ряд чисел Фибоначчи также носит название золотого. Все значения строго соответствуют определенной математической зависимости.
Кроме ряда Фибоначчи, в современной архитектуре применяют и другой метод проектирования – принцип, заложенный французским архитектором Ле Корбюзье. При выборе этого способа отправной единицей измерения выступает рост владельца дома. Исходя из этого показателя рассчитывают размеры здания и внутренних помещений. Благодаря этому подходу дом получается не только гармоничным, но и приобретает индивидуальность.
Любой интерьер приобретет более завершенный вид, если в нем использовать карнизы. При использовании универсальных пропорций можно вычислить его размер. Оптимальными показателями являются 22,5, 14 и 8,5 см. Устанавливать карниз следует по правилам золотого сечения. Маленькая сторона декоративного элемента должна относиться к большей так, как относится к сложенным значениям двух сторон. Если большая сторона будет равна 14 см, то маленькую стоит сделать 8,5 см.
Придать помещению уюта можно путем деления стеновых поверхностей при помощи гипсовых зеркал. Если стена поделена бордюром, от оставшейся большей части стены следует отнять высоту карнизной планки. Для создания зеркала оптимальной длины от бордюра и карниза следует отступить одинаковое расстояние.
Как работает принцип золотого сечения в архитектуре.Тайны ряда Фибоначчи:
Почему нас так привлекают строения древней архитектуры, при виде которых мы испытываем гармонию и умиротворение? Все они были построены на основе золотого сечения, данная зависимость прослеживается и в средневековье, и в современном мире. Математическая пропорция встречается повсеместно: это и ракушки моллюсков, и знаменитые картины художников, и строение человеческого тела, и даже египетские пирамиды. Сегодня расскажем простыми словами, как и, самое главное, зачем нужно использовать божественную гармонию чисел, и как она поможет в строительстве собственного дома и оформлении интерьера.
Просто о сложном: что это такое – правило золотого сечения
Винтовая лестница построена по принципу золотого сечения
Золотое сечение –это правило общей пропорции, которая создает универсальную композицию. Математики называют её формулой божественной гармонии или асимметричной симметрией.
ЭТО ИНТЕРЕСНО! Общее определение правила золотого сечения меньшая величина относится к большей, как большая к целому. Было рассчитано приблизительное число, равное 1,6180339887, это и есто коэфициент золотого сечения. Если смотреть в процентном соотношении, то в одном целом меньшая величина занимает 38%, большая- 62%.
Признано считать, что ЗС пришло к нам еще с древней Греции, но есть и такое мнение, что его греки подсмотрели у египтян. Если проанализировать архитектуру Египта того времени, можно чётко проследить соблюдение математической гармонии. Необычные свойства числовой зависимости стали причиной мистического отношения к золотому сечению:
Экскурс в историю: кто придумал золотое сечение
Представление о золотой пропорции имели и древние греки, и египтяне. Но впервые ещё в 1509 году в книге «Божественная Пропорция», иллюстрации к которой принадлежат Леонардо да Винчи, монах Лука Пачоли дал научное определение правилу. Он видел в золотом сечении божественное единство:
Это интересно. Историки присваивают Леонардо Да Винчи определения термина золотого сечения, поскольку он долгое время изучал божественную закономерность и воплощал ее принцип в своих творениях.
Вторую жизнь ЗС получило в 1855 году благодаря философу Адольфу Цейзингу. Он доработал теорию до абсолютного идеала, и она стала универсальной для всех проявлений. Все это он описал в своей книге «Математическое Естество», на которое в свое время обрушилось много негатива и критики.
Золотое сечение в божественной пропорции
Принцип расчета и построения золотого сечения
Примеры пропорции золотого сечения можно видеть при строительстве многих архитектурных сооружений, только нужно знать, как правильно его увидеть. Для этого достаточно посмотреть на строение всего 5 минут.
Как определить число золотого сечения
С пропорцией ЗС связывают астронома из Италии Фибоначчи, он вывел ряд чисел, в котором значение каждого последующего равно сумме двух предыдущих. Сегодня эта закономерность известна как ряд Фибоначчи:
Данную формулу применяют для расчета пропорций золотого сечения в любой отрасли, на практике чаще всего используют округленные значения 0,62 и 0,38.
Ряд Фибоначчи в церкви Покрова на Нерли
Как рассчитать золотое сечение на простейшем примере
Проще всего объяснить гармонию ЗС можно на примере обычного куриного яйца, точнее на удалении всех точек скорлупы от центра тяжести. Именно форма оболочки, а не её прочность, обеспечила выживаемость птиц столь долгое время и в любых условиях.
Если взять обычный отрезок, который состоит из нескольких маленьких, их длины относятся к большей величине как 0,62. Это показывает, как можно разбить целую линию для получения идеальной пропорции.
Простой пример золотого сечения в курином яйце
Как построить золотое сечение на примере прямоугольника и спирали
Если построить золотой прямоугольник, используя ряд Фибоначчи, он будет выглядеть как единое целое. Рассмотрим зависимость на примере:
Как использовать золотое сечение в жизни.
В этой статье речь пойдет об очень важном секрете, о котором знают немногие бизнесмены, и незнание которого часто приводит к развалу бизнеса. Есть такие известные понятия, как «золотое сечение» и «числа Фибоначчи».Ряд Фибоначчи – это когда сумма двух предыдущих чисел дает следующее число
Т.е. 0,1,1,2,3,5… и т.д. В природе все построено по этому принципу. Например, если подсчитать веточки дерева, можно убедиться, что с увеличением радиуса кроны их число увеличивается по закону золотого сечения.Прямоугольник с отношением сторон 0.618 и 0.382 — золотой прямоугольник. Если от него отрезать квадрат, то останется вновь золотой прямоугольник. Этот процесс можно продолжать до бесконечности.Другой всем знакомый пример — пятиконечная звезда (она же магический символ, пентаграмма), в которой каждая из пяти линий делит другую в точке золотого сечения, а концы звезды являются золотыми треугольниками.Скелет человека также построен по этому закону. Он выдержан в пропорции, близкой к золотому сечению. И чем ближе пропорции к формуле золотого сечения, тем более идеальным выглядит внешность человека. Если расстояние между ступней человека и точкой пупа = 1, то рост человека = 1.618 (разумеется, это в идеале). Число 1.618 и есть коэффициент золотого сечения.Но какое отношение это имеет к бизнесу, деньгам, финансам?! Так вот, самое непосредственное! Закон Фибоначчи и есть та самая формула, по которой добывают богатство во все времена. И все, что вы будете предпринимать в соотношении с числами золотого сечения, будет обречено на успех. И наоборот, игнорирование этого правила приводит к краху. Это своего рода магия денег.Рассмотрим применение закона золотого сечения в бизнесе на практике. Допустим, вы купили ящик апельсинов за 1 доллар (доллар в данном случае условная единица) и продали за 2 доллара. Получили прибыль 100%. Как действовать дальше? Купить на эти 2 доллара еще 2 ящика и продать?НЕТ! Вот это и есть самая распространенная ошибка горе-бизнесменов! Правильно будет, в соответствии с законом золотого сечения, купить еще один ящик, продать с теми же 100% прибыли, и только потом купить 2 ящика. То есть действуем по указанному принципу:0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368,75025,121393,196418,317811, Как видим, всего за 32 цикла мы достигли прибыли свыше миллиона! И при этом у нас еще и всегда оставались «лишние» деньги! Кроме того, этот принцип — хорошая страховка от форс-мажорных обстоятельств. Ведь если в самом начале, получив прибыль в 1 доллар и имея 2 доллара на руках и вложив их все сразу, есть риск потерять все. А так у нас доллар в запасе остался, во всяком случае, не в минус уйдем.Особенно важна эта схема при игре на бирже и прочих сравнительно рискованных финансовых операциях. Пример схематичный, его можно адаптировать к прибыли и в 20%, и к любой другой. Используйте в своих расчетах число 1,618 – коэффициент, по которому следует увеличивать финансы, и вам будет сопутствовать успех!Любую деятельность разумно соотносить с принципом золотого сечения. Это самый надежный и безопасный путь. Главное, определиться с единицей измерения. Это может быть время, этапы в работе и т.д. и т.п. Обогащайтесь также поэтапно, согласуя свои шаги с законами природы.
О золотом сечении простыми словами
Что же это такое? Отрезки золотой пропорции выражаются бесконечной иррациональной дробью, десятичное значение которой равно приближённо числу Ф≈1,618 или Ф≈1,62. Другими словами: если берём целое и делим его на две части так, что одна из них составляет 62%, а другая — 38%, получаем Золотую пропорцию.
Золотой прямоугольник: когда длину большей стороны делим на длину меньшей и получаем число Ф. При делении меньшей на большую получается обратное значение φ ≈ 0,618.
Золотой равнобедренный треугольник: если отношение размера одной боковой стороны и размера основания составляет золотое число Ф; угол между равными сторонами равен 36°.
Золотой прямоугольный треугольник Кеплера объединяет в себе теорему Пифагора и ЗС: соотношение квадратов его сторон составляет 1,618.
Смотрите познавательное видео по теме
https://youtube.com/watch?v=d3AxWLJN_f0
Чтобы не потерять, заберите статью к себе на сену в соцсетях
Что такое золотое сечение
Определение золотому сечению, впервые, дал Евклид в 300 году до н. э. Согласно ему, два объекта находятся в золотой пропорции, если отношение большого объекта к меньшему равно 1.6180.
Разделение отрезка на части, согласно золотому сечению Источник www.oknabm.ru
Самое известное применение золотого сечения – золотой прямоугольник. Он содержит в себе другие прямоугольники, при этом каждые соседние по величине прямоугольники, имеют соотношение длины (или ширины) партнера равное 1,618. Эту теорию можно применить и к другим объектам, разделяя их на компоненты таким же способом.
Золотое сечение, также известное как «фи». Его можно продемонстрировать уравнением
а/b=a+b/a=1,618033987, где а больше, чем b.
Золотой прямоугольник с соотношение сторон равным золотому сечению Источник www.scienceabc.com
Это явление, также демонстрирует последовательность Фибоначчи
1,1,2,3,5,8,13,21 …
Ряд начинается с 1, и строится таким образом, что каждое следующее число образуется суммой двух предыдущих. Если разделить два соседних числа, то получим результат, приближенный к божественной пропорции — 1,618.
Золотой прямоугольник в который вписана золотая спираль Источник porting-team.ru
Чтобы построить золотую сприраль вам понадобиться золотой прямоугольник, который продемонстрирован на картинке выше. Если у вас есть некоторый набор прямоугольников с соотношением сторон (например, длины и длины), двух соседних по величене квадратов, которая равняеться числу «фи», то вы можете приступить к построению золотой спирали.
Она строиться следующим образом: используя сторону квадрата как радиус вы проводите дугу, которая, двигаясь по диагонали, касается точек квадрата. Продолжайте в том же духе и проводите дугу дальше по всем оставшимся точкам следующих квадратов. Пример такой спирали вы можете увидеть на картинке выше.
Что такое золотое сечение?
Это пропорция, полученная делением в крайнем и среднем отношении. Также это называют гармоническим делением. Как вычисляется золотая середина? В выражении математическим языком эта величина представляет собой соотношение двух величин a и b, где известно, что а>b, и имеет место такое равенство: a/b=(a+b)/a. Представив, что a и b – это части одного отрезка, можно сказать: отношение меньшей части к большей равно отношению большей части к целому. Золотое сечение обозначают 21-й буквой греческого алфавита – Ф (произносится как «фи»).
Данное число бесконечно, как и Пи, показывающее отношение длины окружности к диаметру. Выглядит оно так: 1.6180339887498948420… Соответственно, округляют Ф до 1,618.
Принцип расчета и построения золотого сечения
Примеры пропорции золотого сечения можно видеть при строительстве многих архитектурных сооружений, только нужно знать, как правильно его увидеть. Для этого достаточно посмотреть на строение всего 5 минут.
Как определить число золотого сечения
С пропорцией ЗС связывают астронома из Италии Фибоначчи, он вывел ряд чисел, в котором значение каждого последующего равно сумме двух предыдущих. Сегодня эта закономерность известна как ряд Фибоначчи:
- 0, 1,1 (0+1), 2 (1+1), 3 (1+2), 5 (2+3), 8 (3+5), 13 (5+8), 21 (8+13), 34 (13+21), 55 (21+34), 89 (34+55) и так до бесконечности;
- если выполнить деление последующего числа на предыдущее – получится коэффициент ЗС.
Данную формулу применяют для расчета пропорций золотого сечения в любой отрасли, на практике чаще всего используют округленные значения 0,62 и 0,38.
Ряд Фибоначчи в церкви Покрова на Нерли
Как рассчитать золотое сечение на простейшем примере
Проще всего объяснить гармонию ЗС можно на примере обычного куриного яйца, точнее на удалении всех точек скорлупы от центра тяжести. Именно форма оболочки, а не её прочность, обеспечила выживаемость птиц столь долгое время и в любых условиях.
Если взять обычный отрезок, который состоит из нескольких маленьких, их длины относятся к большей величине как 0,62. Это показывает, как можно разбить целую линию для получения идеальной пропорции.
Простой пример золотого сечения в курином яйце
Как построить золотое сечение на примере прямоугольника и спирали
Если построить золотой прямоугольник, используя ряд Фибоначчи, он будет выглядеть как единое целое. Рассмотрим зависимость на примере:
- нужно нарисовать квадрат со стороной 1 и рядом ещё один аналогичный;
- над ними разместить квадрат со стороной 2;
- слева гармонично помещается квадрат с гранью 3;
- ниже – квадрат со стороной 5;
- справа пространство займет квадрат с гранью 8;
- площадь прямоугольника 8×13, в котором 13 — это следующее число ряда;
- если разделить на калькуляторе следующее число на предыдущее, получится значение золотого сечения 1,62, причём, чем больше числа, тем меньшая погрешность в их отношении;
- если по этому принципу построить спираль, каждую четверть витка она будет расширяться именно на значение ЗС.
Принцип золотого сечения в прямоугольникеПостроение золотой спирали из прямоугольника
На видео можно более подробно узнать про магию чисел Фибоначчи:
Watch this video on YouTube
Божественная пропорция: что создано природой
Обратимся к природе, которая является безусловной и стремится к идеальному. В любом, созданном процессе, можно наблюдать эту магическую пропорцию 62:38. Придя к выводу, что гармоничное восприятие заложено в человеке от природы, ученые назвали это соотношение «Божественная пропорция».
Архимед выразил ее в спирали, повторяющей очертания раковины моллюска, подметив однажды ее идеальные формы. Божественная пропорция в архитектуре выражена с помощью сопоставления различных элементов здания и приведения их к одному целому, гармоничному для восприятия.
Действительно, обычно притягивает взгляд либо совершенство, либо уродство. И то и другое имеет одни корни
Совершенство – созданный по системе золотой пропорции идеал, и неважно, искусственный или природный источник использовался в его создании. Уродство же, напротив, привлекает полным несоответствием гармонии, что вынуждает подсознательно искать в нем заложенные природой прекрасные пропорции. И, если постараться, их можно найти
Этот феномен будоражит мозг, заставляя искать спокойной геометрии во всем
И, если постараться, их можно найти. Этот феномен будоражит мозг, заставляя искать спокойной геометрии во всем.